(Don't expect thiamine is going to cure your diabetes but it may help prevent complications. Just something to consider along with your low carb diet, exercise and any other medication you may require.)
http://www.hormonesmatter.com/diabetes-thiamine-treatment-opportunity/
Tuesday, August 5th, 2014 / Chandler Marrs, PhD
Underlying all diabetic conditions is poor sugar control or hyperglycemia. Hyperglycemia can be due to a lack of insulin as in Type 1 diabetes or insulin resistance as in Type 2 diabetes. In either case, the corresponding diabetic complications that evolve over time in many diabetics, the cardiovascular disease, retinopathy, peripheral nerve and vascular damage, represent the effects of sustained hyperglycemia. Until recently, the mechanisms by which diabetic vascular damage developed eluded researchers. Although multiple, seemingly discrete biomarkers had been identified, no single, unifying mechanism was understood. It turns out that diabetics, both Type 1 and Type 2, are severely deficient in thiamine or vitamin B1 and that thiamine is required for glucose control at the cell level. Why is thiamine deficient in diabetics and how does thiamine manage glucose control? The answers to those questions highlight the importance of micronutrients in basic cellular functioning, particularly mitochondrial functioning, and the role of excessive sugar in disease.
<>
Consider the implications of thiamine deficiency, a single micronutrient available in food, on cellular health, and indeed, physical health. In addition its role in mitochondrial functioning, thiamine controls sugar metabolism through multiple pathways. Inefficient sugar metabolism leads to disease. Thiamine also regulates the metabolism of fatty acids and provides the necessary substrates for the neurotransmitters acetylcholine and GABA. Thiamine, much like other critical nutrients, is not only absent from the largely processed diets of modernity, but at every turn, can be depleted by medications and environmental toxicants. Against the backdrop of nutrient depleted and damaged mitochondria, accommodating medications, vaccines and environmental toxicants that also damage mitochondria, increase oxidative stress and further deplete critical nutrients, it is no wonder we are living sicker and dying younger than ever before. The depletion of critical nutrients is causing disease; diseases no medication can treat.
-----------------------------
http://www.ncbi.nlm.nih.gov/pubmed/18581039
Abstract
Thiamine (vitamin B1) is an essential cofactor in most organisms and is required at several stages of anabolic and catabolic intermediary metabolism, such as intracellular glucose metabolism, and is also a modulator of neuronal and neuro-muscular transmission. Lack of thiamine or defects in its intracellular transport can cause a number of severe disorders. Thiamine acts as a coenzyme for transketolase (TK) and for the pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase complexes, enzymes which play a fundamental role for intracellular glucose metabolism. In particular, TK is able to shift excess fructose-6-phosphate and glycerhaldeyde-3-phosphate from glycolysis into the pentose-phosphate shunt, thus eliminating these potentially damaging metabolites from the cytosol. Diabetes might be considered a thiamine-deficient state, if not in absolute terms at least relative to the increased requirements deriving from accelerated and amplified glucose metabolism in non-insulin dependent tissues that, like the vessel wall, are prone to complications. A thiamine/TK activity deficiency has been described in diabetic patients, the correction of which by thiamine and/or its lipophilic derivative, benfotiamine, has been demonstrated in vitro to counteract the damaging effects of hyperglycaemia on vascular cells. Little is known, however, on the positive effects of thiamine/benfotiamine administration in diabetic patients, apart from the possible amelioration of neuropathic symptoms. Clinical trials on diabetic patients would be necessary to test this vitamin as a potential and inexpensive approach to the prevention and/or treatment of diabetic vascular complications.
http://www.hormonesmatter.com/diabetes-thiamine-treatment-opportunity/
Tuesday, August 5th, 2014 / Chandler Marrs, PhD
Underlying all diabetic conditions is poor sugar control or hyperglycemia. Hyperglycemia can be due to a lack of insulin as in Type 1 diabetes or insulin resistance as in Type 2 diabetes. In either case, the corresponding diabetic complications that evolve over time in many diabetics, the cardiovascular disease, retinopathy, peripheral nerve and vascular damage, represent the effects of sustained hyperglycemia. Until recently, the mechanisms by which diabetic vascular damage developed eluded researchers. Although multiple, seemingly discrete biomarkers had been identified, no single, unifying mechanism was understood. It turns out that diabetics, both Type 1 and Type 2, are severely deficient in thiamine or vitamin B1 and that thiamine is required for glucose control at the cell level. Why is thiamine deficient in diabetics and how does thiamine manage glucose control? The answers to those questions highlight the importance of micronutrients in basic cellular functioning, particularly mitochondrial functioning, and the role of excessive sugar in disease.
<>
Consider the implications of thiamine deficiency, a single micronutrient available in food, on cellular health, and indeed, physical health. In addition its role in mitochondrial functioning, thiamine controls sugar metabolism through multiple pathways. Inefficient sugar metabolism leads to disease. Thiamine also regulates the metabolism of fatty acids and provides the necessary substrates for the neurotransmitters acetylcholine and GABA. Thiamine, much like other critical nutrients, is not only absent from the largely processed diets of modernity, but at every turn, can be depleted by medications and environmental toxicants. Against the backdrop of nutrient depleted and damaged mitochondria, accommodating medications, vaccines and environmental toxicants that also damage mitochondria, increase oxidative stress and further deplete critical nutrients, it is no wonder we are living sicker and dying younger than ever before. The depletion of critical nutrients is causing disease; diseases no medication can treat.
-----------------------------
http://www.ncbi.nlm.nih.gov/pubmed/18581039
Abstract
Thiamine (vitamin B1) is an essential cofactor in most organisms and is required at several stages of anabolic and catabolic intermediary metabolism, such as intracellular glucose metabolism, and is also a modulator of neuronal and neuro-muscular transmission. Lack of thiamine or defects in its intracellular transport can cause a number of severe disorders. Thiamine acts as a coenzyme for transketolase (TK) and for the pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase complexes, enzymes which play a fundamental role for intracellular glucose metabolism. In particular, TK is able to shift excess fructose-6-phosphate and glycerhaldeyde-3-phosphate from glycolysis into the pentose-phosphate shunt, thus eliminating these potentially damaging metabolites from the cytosol. Diabetes might be considered a thiamine-deficient state, if not in absolute terms at least relative to the increased requirements deriving from accelerated and amplified glucose metabolism in non-insulin dependent tissues that, like the vessel wall, are prone to complications. A thiamine/TK activity deficiency has been described in diabetic patients, the correction of which by thiamine and/or its lipophilic derivative, benfotiamine, has been demonstrated in vitro to counteract the damaging effects of hyperglycaemia on vascular cells. Little is known, however, on the positive effects of thiamine/benfotiamine administration in diabetic patients, apart from the possible amelioration of neuropathic symptoms. Clinical trials on diabetic patients would be necessary to test this vitamin as a potential and inexpensive approach to the prevention and/or treatment of diabetic vascular complications.