Tauroursodeoxycholic Acid May Improve Liver and Muscle but Not Adipose Tissue Insulin Sensitivity in Obese Men and Women
Abstract
OBJECTIVE Insulin resistance is commonly associated with obesity. Studies conducted in obese mouse models found that endoplasmic reticulum (ER) stress contributes to insulin resistance, and treatment with tauroursodeoxycholic acid (TUDCA), a bile acid derivative that acts as a chemical chaperone to enhance protein folding and ameliorate ER stress, increases insulin sensitivity. The purpose of this study was to determine the effect of TUDCA therapy on multiorgan insulin action and metabolic factors associated with insulin resistance in obese men and women.
RESEARCH DESIGN AND METHODS Twenty obese subjects ([means ± SD] aged 48 ± 11 years, BMI 37 ± 4 kg/m2) were randomized to 4 weeks of treatment with TUDCA (1,750 mg/day) or placebo. A two-stage hyperinsulinemic-euglycemic clamp procedure in conjunction with stable isotopically labeled tracer infusions and muscle and adipose tissue biopsies were used to evaluate in vivo insulin sensitivity, cellular factors involved in insulin signaling, and cellular markers of ER stress.
RESULTS Hepatic and muscle insulin sensitivity increased by ∼30% (P < 0.05) after treatment with TUDCA but did not change after placebo therapy. In addition, therapy with TUDCA, but not placebo, increased muscle insulin signaling (phosphorylated insulin receptor substrateTyr and AktSer473 levels) (P < 0.05). Markers of ER stress in muscle or adipose tissue did not change after treatment with either TUDCA or placebo.
CONCLUSIONS These data demonstrate that TUDCA might be an effective pharmacological approach for treating insulin resistance. Additional studies are needed to evaluate the target cells and mechanisms responsible for this effect.
The ability of insulin to decrease hepatic glucose production, suppress adipose tissue lipolytic rate, and stimulate skeletal muscle glucose uptake is critical for normal metabolic function. Obesity is an important cause of multiorgan insulin resistance (1–3), and insulin sensitivity decreases linearly with increasing BMI (4,5). Insulin resistance has important clinical implications because it is involved in the pathogenesis of many of the metabolic complications associated with obesity. The precise mechanisms responsible for the link between obesity and insulin resistance are not known but likely involve alterations in fatty acid metabolism, excess triglyceride accumulation in the liver and muscle (6–11), and systemic low-grade inflammation (12–14).
Recently, endoplasmic reticulum (ER) stress has been identified as a contributor to insulin resistance associated with obesity in experimental models (15,16). The ER is responsible for the synthesis, folding, and trafficking of secretory and membrane proteins. Disruption of ER homeostasis results in an adaptive unfolded protein response (UPR), which aims to restore ER folding capacity and mitigate stress. ER stress can also inhibit insulin signaling, at least in part, by activating the c-Jun NH2-terminal kinase (JNK) pathway through inositol-requiring enzyme (IRE)-1 (15,17–20) or RNA-dependent protein kinase (PKR)-mediated mechanisms (21). Increased ER stress is associated with impaired insulin action in obese mice (15), and chemical or genetic amelioration of this stress improves insulin sensitivity and glucose homeostasis (18). Increased ER stress in liver and adipose tissue and insulin resistance are also associated with obesity in humans (22,23), whereas weight loss decreases ER stress and improves insulin sensitivity (22).
Tauroursodeoxycholic acid (TUDCA) is a bile acid derivative that has been used in Europe to treat cholelithiasis and cholestatic liver disease. TUDCA can also act as a chemical chaperone to enhance protein folding and protect cells against ER stress (18). In obese mice, parenteral TUDCA treatment reduces ER stress, improves systemic insulin resistance, and decreases intrahepatic triglyceride (IHTG) content (18). Although data from studies conducted in animal models and cell systems demonstrate beneficial metabolic effects, the effect of TUDCA on insulin action has not been studied in human subjects.
The purpose of the present study was to determine whether chemical interventions targeting the ER stress pathway results in metabolic benefits in people. Accordingly, we conducted a randomized controlled trial in insulin-resistant, obese subjects to evaluate the effect of treatment with TUDCA on insulin sensitivity in the liver (glucose production), muscle (glucose uptake), and adipose tissue (lipolysis). We hypothesized that treatment with TUDCA would improve multiorgan insulin signaling and sensitivity and other metabolic factors associated with insulin resistance. The hyperinsulinemic-euglycemic clamp procedure, in conjunction with stable isotopically labeled tracer infusions, was used to determine in vivo insulin sensitivity, and adipose tissue and skeletal muscle biopsies were obtained to assess ER stress markers, phosphorylation of JNK, and components of the insulin-signaling pathway before and after 4 weeks of treatment with TUDCA or placebo.
http://diabetes.diabetesjournals.org/content/59/8/1899.full
Abstract
OBJECTIVE Insulin resistance is commonly associated with obesity. Studies conducted in obese mouse models found that endoplasmic reticulum (ER) stress contributes to insulin resistance, and treatment with tauroursodeoxycholic acid (TUDCA), a bile acid derivative that acts as a chemical chaperone to enhance protein folding and ameliorate ER stress, increases insulin sensitivity. The purpose of this study was to determine the effect of TUDCA therapy on multiorgan insulin action and metabolic factors associated with insulin resistance in obese men and women.
RESEARCH DESIGN AND METHODS Twenty obese subjects ([means ± SD] aged 48 ± 11 years, BMI 37 ± 4 kg/m2) were randomized to 4 weeks of treatment with TUDCA (1,750 mg/day) or placebo. A two-stage hyperinsulinemic-euglycemic clamp procedure in conjunction with stable isotopically labeled tracer infusions and muscle and adipose tissue biopsies were used to evaluate in vivo insulin sensitivity, cellular factors involved in insulin signaling, and cellular markers of ER stress.
RESULTS Hepatic and muscle insulin sensitivity increased by ∼30% (P < 0.05) after treatment with TUDCA but did not change after placebo therapy. In addition, therapy with TUDCA, but not placebo, increased muscle insulin signaling (phosphorylated insulin receptor substrateTyr and AktSer473 levels) (P < 0.05). Markers of ER stress in muscle or adipose tissue did not change after treatment with either TUDCA or placebo.
CONCLUSIONS These data demonstrate that TUDCA might be an effective pharmacological approach for treating insulin resistance. Additional studies are needed to evaluate the target cells and mechanisms responsible for this effect.
The ability of insulin to decrease hepatic glucose production, suppress adipose tissue lipolytic rate, and stimulate skeletal muscle glucose uptake is critical for normal metabolic function. Obesity is an important cause of multiorgan insulin resistance (1–3), and insulin sensitivity decreases linearly with increasing BMI (4,5). Insulin resistance has important clinical implications because it is involved in the pathogenesis of many of the metabolic complications associated with obesity. The precise mechanisms responsible for the link between obesity and insulin resistance are not known but likely involve alterations in fatty acid metabolism, excess triglyceride accumulation in the liver and muscle (6–11), and systemic low-grade inflammation (12–14).
Recently, endoplasmic reticulum (ER) stress has been identified as a contributor to insulin resistance associated with obesity in experimental models (15,16). The ER is responsible for the synthesis, folding, and trafficking of secretory and membrane proteins. Disruption of ER homeostasis results in an adaptive unfolded protein response (UPR), which aims to restore ER folding capacity and mitigate stress. ER stress can also inhibit insulin signaling, at least in part, by activating the c-Jun NH2-terminal kinase (JNK) pathway through inositol-requiring enzyme (IRE)-1 (15,17–20) or RNA-dependent protein kinase (PKR)-mediated mechanisms (21). Increased ER stress is associated with impaired insulin action in obese mice (15), and chemical or genetic amelioration of this stress improves insulin sensitivity and glucose homeostasis (18). Increased ER stress in liver and adipose tissue and insulin resistance are also associated with obesity in humans (22,23), whereas weight loss decreases ER stress and improves insulin sensitivity (22).
Tauroursodeoxycholic acid (TUDCA) is a bile acid derivative that has been used in Europe to treat cholelithiasis and cholestatic liver disease. TUDCA can also act as a chemical chaperone to enhance protein folding and protect cells against ER stress (18). In obese mice, parenteral TUDCA treatment reduces ER stress, improves systemic insulin resistance, and decreases intrahepatic triglyceride (IHTG) content (18). Although data from studies conducted in animal models and cell systems demonstrate beneficial metabolic effects, the effect of TUDCA on insulin action has not been studied in human subjects.
The purpose of the present study was to determine whether chemical interventions targeting the ER stress pathway results in metabolic benefits in people. Accordingly, we conducted a randomized controlled trial in insulin-resistant, obese subjects to evaluate the effect of treatment with TUDCA on insulin sensitivity in the liver (glucose production), muscle (glucose uptake), and adipose tissue (lipolysis). We hypothesized that treatment with TUDCA would improve multiorgan insulin signaling and sensitivity and other metabolic factors associated with insulin resistance. The hyperinsulinemic-euglycemic clamp procedure, in conjunction with stable isotopically labeled tracer infusions, was used to determine in vivo insulin sensitivity, and adipose tissue and skeletal muscle biopsies were obtained to assess ER stress markers, phosphorylation of JNK, and components of the insulin-signaling pathway before and after 4 weeks of treatment with TUDCA or placebo.
http://diabetes.diabetesjournals.org/content/59/8/1899.full